The performance of mobile ad hoc networks in general and that of the routing algorithm, in particular, can be heavily affected by the intrinsic dynamic nature of the underlying topology. In this paper, we build a new analytical/numerical framework that characterizes nodes' mobility and the evolution of links between them. This formulation is based on a stationary Markov chain representation of link connectivity. The existence of a link between two nodes depends on their distance, which is governed by the mobility model. In our analysis, nodes move randomly according to an Ornstein-Uhlenbeck process using one tuning parameter to obtain different levels of randomness in the mobility pattern. Finally, we propose an entropy-ratebased metric that quantifies link uncertainty and evaluates its stability. Numerical results show that the proposed approach can accurately reflect the random mobility in the network and fully captures the link dynamics. It may thus be considered a valuable performance metric for the evaluation of the link stability and connectivity in these networks.