In this work, we focus on the numerical approximation of the shallow water equations in two space dimensions. Our aim is to propose a well-balanced, all-regime and positive scheme. By well-balanced, it is meant that the scheme is able to preserve the so-called lake at rest smooth equilibrium solutions. By all-regime, we mean that the scheme is able to deal with all flow regimes, including the low-Froude regime which is known to be challenging when using usual Godunov-type finite volume schemes. At last, the scheme should be positive which means that the water height stays positive for all time. Our approach is based on a Lagrangeprojection decomposition which allows to naturally decouple the acoustic and transport terms. Numerical experiments on unstructured meshes illustrate the good behaviour of the scheme.