2023
DOI: 10.37236/11174
|View full text |Cite
|
Sign up to set email alerts
|

Enumeration of Corner Polyhedra and 3-Connected Schnyder Labelings

Abstract: We show that corner polyhedra and 3-connected Schnyder labelings join the growing list of planar structures that can be set in exact correspondence with (weighted) models of quadrant walks via a bijection due to Kenyon, Miller, Sheffield and Wilson. Our approach leads to a first polynomial time algorithm to count these structures, and to the determination of their exact asymptotic growth constants : the number $p_n$ of corner polyhedra and $s_n$ of 3-connected Schnyder woods of size $n$ respectively sati… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 0 publications
0
0
0
Order By: Relevance