The process of shaping distribution network structures is one of the most fundamental design tasks, and determines the delivery certainty of media transported by them. It is especially crucial with reference to network elements of a critical character, such as roads or water supply, sewage, or electrical networks. In urban conditions, the geometric shaping of these structures has a quasi-chaotic character that is individual for each network and city. The complexity of these networks increases significantly with the size of a city, and therefore the evaluation of water delivery certainty is also a difficult issue. Despite many years of research, there is no universal method to evaluate this certainty. The objective of this paper is to present two original approaches: the number of minimal efficiency paths from a water source to reference consumption nodes, and the relation of this number to the fractal dimension of a network’s geometric structure. The developed methods were tested in the conditions of a few real water supply networks. The obtained results indicate that the analyzed methods can be used for the preliminary and relatively rapid evaluation of water delivery certainty.