Wildfires frequently occur in Ukraine during agricultural open-burning seasons in spring and autumn. High aerosol concentrations from fire emissions can significantly affect meteorological processes via direct and indirect aerosol effects. To study these impacts, we selected a severe wildfire episode from April 2020 in the Chornobyl Exclusion Zone (CEZ) and its surrounding area as a case study. We employed the Enviro-HIRLAM modeling system to simulate reference (REF) meteorological conditions, along with direct (DAE), indirect (IDAE), and combined (COMB) aerosol effects. In our simulations, black carbon (BC) and organic carbon (OC) comprised 70–80% of all aerosol mass in the region, represented in two layers of higher concentrations: one near the surface and the other 3–4 km above the surface. Our simulations showed that the inclusion of aerosol effects into the modeling framework led to colder (up to −3 °C) and drier (relative humidity drop up to −20%) conditions near the surface. We also observed localized changes in cloudiness, precipitation (mainly redistribution), and wind speed (up to ±4 m/s), particularly during the movement of atmospheric cold fronts. Larger uncertainties were observed in coarser model simulations when direct aerosol effects were considered. Quantifying the aerosol effects is crucial for predicting and promptly detecting changes that could exacerbate unfavorable weather conditions and wildfires. Such knowledge is essential for improving the effectiveness of emergency response measures.