An approach consisting in combining in situ and laboratory experiments is often favoured for investigating the mechanisms involved in the weathering of the materials of the cultural heritage. However, the realistic simulation in the laboratory of the environmental conditions ruling the interactions of atmospheric compounds with materials is a very complex task. The aim of this work is to characterise CIME, a new chamber specially built to simulate the interactions between materials of the cultural heritage and the environment. The originality of this instrument is that beside the usual climatic parameters (temperature, relative humidity, solar radiation) and gaseous pollutants, it also allows the controlled injection of different types of particulate matter such as terrigenous, marine and anthropogenic. Therefore, varied realistic atmospheric environments (marine or urban) can be easily simulated within CIME. In addition to the technical description of CIME, this paper shows the first results obtained by the impact of gaseous pollutants on non-durable glass, bronze and limestone. The first experiments for the deposition of different particles (calcite, clays, soot and halite) are also presented.