Noble metal nanoparticles supported on porous silica materials represent an important class of heterogeneous catalysts. Various synthesis strategies have been developed, including the application of ligand‐assisted metal precursors, multistep synthesis procedures, post‐synthetic modifications, and magnetic mesoporous silica particles. Emphasis has been laid on the introduction of green procedures, based on the utilization of environmentally friendly solvents, efficient stabilizing agents, non‐toxic reagents, and mild reaction conditions. Palladium nanoparticles have long been recognized as the most efficient catalysts in a wide range of organic transformations, including the Heck, Suzuki, Stille, and Sonogashira reactions. Although these transformations have been extensively investigated in homogeneous catalytic systems, the application of heterogeneous catalysts, including silica‐supported Pd0 nanoparticles, has gained in increasing importance. The aim of this review is to provide an outlook on the current research progress achieved on the development of novel synthetic procedures, affording highly dispersed Pd0 nanoparticles immobilized on porous silica materials, which proved to be efficient and recyclable catalysts in C–C coupling and cross‐coupling reactions.