General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ?
Take down policyIf you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim. Abstract-The integration of more-electric technologies, such as energy storage systems (ESSs) and electric propulsion, has gained attention in recent years as a promising approach to reduce fuel consumption and emissions in the maritime industry. In this context, hybrid power systems (HPSs) with direct current (DC) distribution are currently gaining a commendable interest in research and industrial applications. This paper examines the impact of using HPS with DC distribution and a battery energy storage system (BESS) over a conventional AC power system for short haul roll-on/roll-off (RORO) ferries. An electric ferry with a HPS is modeled in this study and the power management system is simulated using the Matlab/Simulink software. The result is validated using measured load profile of a ferry. The performance of the DC HPS is compared with the conventional AC system based on fuel consumption and emission reductions. An approach to estimate the fuel consumption of the diesel engine through calculation of specific fuel oil consumption (SFOC) is also presented. This study uses two optimization techniques: a classical power management method namely Rule-Based control (RB) and a meta-heuristic power management method known as Grey Wolf Optimization (GWO) to optimally manage the power sharing of the proposed HPS. Fuel consumption and emission indicators are also used to assess the performance of the two power management methods. The simulation results show that the HPS provides a 2.91 % and 7.48 % fuel consumption reduction using RB method and GWO method respectively. It is apparent from the result that the HPS has more fuel savings while running the diesel generator sets (DGs) at higher operational efficiency. It is interesting that the proposed HPS using both power management methods provided a 100 % emission reduction at berth. Finally, it was found that using a meta-heuristic optimization algorithm provides better fuel and emission reductions than a classical method.Keywords-Battery, DC power system, electric ferry, energy storage system, hybrid power system, power management.