Egg recruitment quantifies the relative importance of realized fecundity and migration rates in the population dynamics of highly mobile insects. We develop here a formal context upon which to base the measurement and interpretation of egg recruitment in population dynamics of eastern and western spruce budworms, two geographically separated species that share a very similar ecology. Under most circumstances, per capita egg recruitment rates in these budworms are higher in low-density populations and lower in high-density populations, relative to the regional mean: Low-density populations are nearly always migration sinks for gravid moths, and dense populations nearly always sources. The slope of this relationship, measured on a log scale, is negatively correlated with migration rate, and ranges between 0 and −1. The steeper the slope, the more marked net migration. Using our western spruce budworm observations, we found strong evidence of density-dependent emigration in budworms, so migration is not simply a random perturbation in the lagged, density-dependent stochastic process leading to budworm outbreaks. It is itself statistically and biologically density-dependent. Therefore, moth migration is a synchronizing factor and a spread mechanism that is essential to understanding the development and expansion of spruce budworm outbreaks at regional scales in the boreal forests of North America.