Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
A six-week feeding trial was conducted to assess the safety of single-domain antibodies (sdAbs) derived from camelids against the white spot syndrome virus (WSSV) (WSSVvp28 was used as the antigen), focusing on the whole-organism responses and molecular-level changes in juvenile whiteleg shrimp (Litopenaeus vannamei). Five experimental diets with varying levels of sdAbs were formulated: CON (no sdAb supplementation); SDA8.2 (8.20% of sdAbs); SDA16.4 (16.40% of sdAbs); SDA24.6 (24.60% of sdAbs); and SDA32.8 (32.80% of sdAbs). In the CON diet, 450 mL of water per kg of diet (45%) was used to form a feed dough, while sdAbs were used to replace the water in the treatment diets. A total of 450 shrimp, with an initial body weight of 3.27 ± 0.02 g (mean ± SEM), were randomly distributed in 15 tanks (30 shrimp per tank; three tanks per treatment). Each tank was filled with 30 L of seawater (77 L capacity) in an indoor semi-recirculating system with a constant water flow rate of 1.2 L min−1. The photoperiod was maintained at 12 h of light and 12 h of dark. The water temperature, pH, salinity, and dissolved oxygen were 27.3 ± 0.1 °C, 7.61 ± 0.01, 34 ± 1 ppt, and 5.94 ± 0.04 mg L−1, respectively. During the feeding trial, the shrimp were fed the experimental diet (40% protein and 11% lipid) three times a day for six weeks. Following the feeding trial, an acute cold-water-temperature stress test was conducted by abruptly exposing the shrimp from each treatment to 15 °C for 4 h, down from 27 °C. The results showed no significant differences in the growth performance (weight gain, feed utilization efficiency, survival, etc.), plasma metabolites (aspartate aminotransferase activity, alanine aminotransferase activity, total protein, and glucose), or antioxidant enzymes (superoxide dismutase and glutathione peroxidase) among all the experimental diets (p > 0.05). In the acute cold-temperature stress test, there was no significant interaction between sdAb supplementation and temperature stress, nor any main effect from either factor, except for the main effect of temperature stress on the glucose levels, which was significantly higher in shrimp exposed to cold-temperature stress (p < 0.05). The next-generation sequencing of differentially expressed genes (DEGs) in the hepatopancreases of shrimp fed the CON, SDA16.4, and SDA32.8 diets, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, indicated that DEGs were significantly enriched in signaling pathways associated with growth, cold stress, and antioxidant systems. Overall, the results from conventional measurements suggest that the use of sdAbs against the WSSV may be safe for juvenile whiteleg shrimp. However, findings from the sophisticated analysis indicate that further research is needed to understand the molecular mechanisms underlying the observed changes, and to evaluate the long-term effects of sdAb supplementation in shrimp diets.
A six-week feeding trial was conducted to assess the safety of single-domain antibodies (sdAbs) derived from camelids against the white spot syndrome virus (WSSV) (WSSVvp28 was used as the antigen), focusing on the whole-organism responses and molecular-level changes in juvenile whiteleg shrimp (Litopenaeus vannamei). Five experimental diets with varying levels of sdAbs were formulated: CON (no sdAb supplementation); SDA8.2 (8.20% of sdAbs); SDA16.4 (16.40% of sdAbs); SDA24.6 (24.60% of sdAbs); and SDA32.8 (32.80% of sdAbs). In the CON diet, 450 mL of water per kg of diet (45%) was used to form a feed dough, while sdAbs were used to replace the water in the treatment diets. A total of 450 shrimp, with an initial body weight of 3.27 ± 0.02 g (mean ± SEM), were randomly distributed in 15 tanks (30 shrimp per tank; three tanks per treatment). Each tank was filled with 30 L of seawater (77 L capacity) in an indoor semi-recirculating system with a constant water flow rate of 1.2 L min−1. The photoperiod was maintained at 12 h of light and 12 h of dark. The water temperature, pH, salinity, and dissolved oxygen were 27.3 ± 0.1 °C, 7.61 ± 0.01, 34 ± 1 ppt, and 5.94 ± 0.04 mg L−1, respectively. During the feeding trial, the shrimp were fed the experimental diet (40% protein and 11% lipid) three times a day for six weeks. Following the feeding trial, an acute cold-water-temperature stress test was conducted by abruptly exposing the shrimp from each treatment to 15 °C for 4 h, down from 27 °C. The results showed no significant differences in the growth performance (weight gain, feed utilization efficiency, survival, etc.), plasma metabolites (aspartate aminotransferase activity, alanine aminotransferase activity, total protein, and glucose), or antioxidant enzymes (superoxide dismutase and glutathione peroxidase) among all the experimental diets (p > 0.05). In the acute cold-temperature stress test, there was no significant interaction between sdAb supplementation and temperature stress, nor any main effect from either factor, except for the main effect of temperature stress on the glucose levels, which was significantly higher in shrimp exposed to cold-temperature stress (p < 0.05). The next-generation sequencing of differentially expressed genes (DEGs) in the hepatopancreases of shrimp fed the CON, SDA16.4, and SDA32.8 diets, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, indicated that DEGs were significantly enriched in signaling pathways associated with growth, cold stress, and antioxidant systems. Overall, the results from conventional measurements suggest that the use of sdAbs against the WSSV may be safe for juvenile whiteleg shrimp. However, findings from the sophisticated analysis indicate that further research is needed to understand the molecular mechanisms underlying the observed changes, and to evaluate the long-term effects of sdAb supplementation in shrimp diets.
Coastal aquaculture plays a crucial role in global food security and the economic development of coastal regions, but it also causes environmental degradation in coastal ecosystems. Therefore, the automation, accurate extraction, and monitoring of coastal aquaculture areas are crucial for the scientific management of coastal ecological zones. This study proposes a novel deep learning- and attention-based median adaptive fusion U-Net (MAFU-Net) procedure aimed at precisely extracting individually separable aquaculture ponds (ISAPs) from medium-resolution remote sensing imagery. Initially, this study analyzes the spectral differences between aquaculture ponds and interfering objects such as saltwater fields in four typical aquaculture areas along the coast of Liaoning Province, China. It innovatively introduces a difference index for saltwater field aquaculture zones (DIAS) and integrates this index as a new band into remote sensing imagery to increase the expressiveness of features. A median augmented adaptive fusion module (MEA-FM), which adaptively selects channel receptive fields at various scales, integrates the information between channels, and captures multiscale spatial information to achieve improved extraction accuracy, is subsequently designed. Experimental and comparative results reveal that the proposed MAFU-Net method achieves an F1 score of 90.67% and an intersection over union (IoU) of 83.93% on the CHN-LN4-ISAPS-9 dataset, outperforming advanced methods such as U-Net, DeepLabV3+, SegNet, PSPNet, SKNet, UPS-Net, and SegFormer. This study’s results provide accurate data support for the scientific management of aquaculture areas, and the proposed MAFU-Net method provides an effective method for semantic segmentation tasks based on medium-resolution remote sensing images.
Decoupling carbon emissions from economic growth is the key for the sustainable development of developing countries. Based on the panel data of marine aquaculture in China from 2010 to 2019, this paper employs the Tapio decoupling index model to analyze the decoupling characteristics of net carbon emissions and the economic growth of marine aquaculture. The logarithmic average weight decomposition method (LMDI model) and Tapio decoupling effort index model are also introduced to explore the contribution of various areas, provinces, and factors to the decoupling of net carbon emissions and the economic growth of marine aquaculture. Empirical results show that: (1) Net carbon emissions have a decoupling trend from the economic growth of marine aquaculture, but there is a large regional difference. (2) Regarding the degree of decoupling efforts, it is much stronger in the eastern and southern ocean economic zones than that in the northern ocean economic zone. (3) In terms of the decoupling contributions of various factors, carbon emission intensity > aquaculture scale > aquaculture efficiency > aquaculture structure, but there is heterogeneity among the different regions. Among the reasons for the inter-regional differences, carbon emission intensity > aquaculture scale > aquaculture structure > aquaculture efficiency. A further redundancy efficiency analysis explains the source of the differences. On this basis, strategies are proposed to improve the efficiency of marine aquaculture, including the construction of a modern three-dimensional aquaculture system, the improvement of the market-oriented mechanism, and the establishment of a modern marine aquaculture economic system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.