We modified C3-symmetric benzene-1,3,5-tris-amide (BTA) by introducing flexible linkers in order to generate an N-centered BTA (N-BTA) molecule. The N-BTA compound formed gels in alcohols and aqueous mixtures of high-polar solvents. Rheological studies showed that the DMSO/water (1:1, v/v) gels were mechanically stronger compared to other gels, and a similar trend was observed for thermal stability. Powder X-ray analysis of the xerogel obtained from various aqueous gels revealed that the packing modes of the gelators in these systems were similar. The stimuli-responsive properties of the N-BTA towards sodium/potassium salts indicated that the gel network collapsed in the presence of more nucleophilic anions such as cyanide, fluoride, and chloride salts at the MGC, but the gel network was intact when in contact with nitrate, sulphate, acetate, bromide, and iodide salts, indicating the anion-responsive properties of N-BTA gels. Anion-induced gel formation was observed for less nucleophilic anions below the MGC of N-BTA. The ability of N-BTA gels to act as an adsorbent for hazardous anionic and cationic dyes in water was evaluated. The results indicated that the ethanolic gels of N-BTA successfully absorbed methylene blue and methyl orange dyes from water. This work demonstrates the potential of the N-BTA gelator to act as a stimuli-responsive material and a promising candidate for water purification.