Monitoring freshwater biodiversity is essential to understand the impacts of human activities and for effective management of ecosystems. Thereby, biodiversity can be assessed through direct collection of targeted organisms, through indirect evidence of their presence (e.g. signs, environmental DNA, camera trap, etc.), or through extrapolations from species distribution models (SDM). Differences in approaches used in biodiversity assessment, however, may come with individual challenges and hinder cross-study comparability. In the context of rapidly developing techniques, we compared a triad of approaches in order to understand assessment of aquatic macroinvertebrate biodiversity. Specifically, we compared the community composition and species richness of three orders of aquatic macroinvertebrates (mayflies, stoneflies, and caddisflies, hereafter EPT) obtained via eDNA metabarcoding and via traditional in situ kicknet sampling to catchment-level based predictions of a species distribution model. We used kicknet data from 24 sites in Switzerland and compared taxonomic lists to those obtained using eDNA amplified with two different primer sets. Richness detected by these methods was compared to the independent predictions made by a statistical species distribution model using landscape-level features to estimate EPT diversity. Despite the ability of eDNA to consistently detect some EPT species found by traditional sampling, we found important discrepancies in community composition between the two approaches, particularly at local scale. Overall, the more specific set of primers, namely fwhF2/EPTDr2n, was most efficient for the detection of target species and for characterizing the diversity of EPT. Moreover, we found that the species richness measured by eDNA was poorly correlated to the richness measured by kicknet sampling and that the richness estimated by eDNA and kicknet were poorly correlated with the prediction of the statistical model. Overall, however, neither eDNA nor the traditional approach had strong links to the predictive models, indicating inherent limitations in upscaling species richness estimates. Future challenges include improving the accuracy and sensitivity of each approach individually yet also acknowledge their respective limitations, in order to best meet stakeholder demands addressing the biodiversity crisis we are facing.