We present an approach for automated in-situ monitoring of phytoplankton and zooplankton communities based on a dual magnification dark-field imaging microscope/camera. We describe the Dual Scripps Plankton Camera (DSPC) system and associated image processing, and assess its capabilities in detecting and characterizing plankton species of different size and taxonomic categories, and in measuring their abundances in both laboratory and field applications. In the laboratory, body size and abundance estimates by the DSPC significantly and robustly scale with the same measurements derived by traditional microscopy. In the field, a DSPC installed permanently at 3 m depth in Lake Greifensee (Switzerland), delivered images of plankton individuals, colonies, and heterospecific aggregates without disrupting natural arrangements of interacting organisms, their microenvironment or their behavior at hourly timescales. The DSPC was able to track the dynamics of taxa in the size range between ~10 μm to ~ 1 cm, covering virtually all the components of the planktonic food web (including parasites and potentially toxic cyanobacteria). Comparing data from the field-deployed DSPC to traditional sampling and microscopy revealed a general overall agreement in estimates of plankton diversity and abundances, despite imaging limitations in detecting small phytoplankton species and rare and large zooplankton taxa (e.g. carnivorous zooplankton). The most significant disagreements between traditional methods and the DSPC resided in the measurements of community properties of zooplankton, organisms that are heterogeneously distributed spatially and temporally, and whose demography appeared to be better captured by automated imaging. Time series collected by the DSPC depicted ecological succession patterns, algal bloom dynamics and circadian fluctuations with a temporal frequency and morphological resolution that would have been impossible with traditional methods. We conclude that the DSPC approach is suitable for stable long-term deployments, and robust for both research and water quality monitoring. Access to high frequency, reproducible and real-time data of a large spectrum of the planktonic ecosystem might represent a breakthrough in both applied and fundamental plankton ecology.