BackgroundThe niche concept describes the range of conditions supporting the establishment and persistence of species in the environment. Although widely used in ecology, it has not been often applied to microbes, for which comparative niche analyses are still lacking. Yet, quantifying the niche of microbial taxa is necessary to forecast how taxa and the communities they compose might respond to environmental changes. In this study, we identified important topoclimatic, edaphic, spatial and biotic drivers of the alpha and beta diversity of bacterial, archaeal, fungal and protist communities. Then, we established a method to calculate the niche breadth and position of each taxon along environmental gradients to determine whether microorganisms have distinct environmental niches. ResultsFor all microbial groups, edaphic properties were identified as the most important drivers of both community diversity and composition. Protists presented the largest niche breadths, followed by bacteria and archaea, with fungi displaying the smallest. Niche breadth generally decreased towards environmental extremes, especially along edaphic gradients, suggesting increased specialisation of all microbial taxa in highly selective environments. ConclusionIn this study, we showed that microorganisms have well defined niches, as do macro-organisms, and that these likely drive part of the observed spatial patterns of community variations, but with notable differences among taxonomic groups. Applying the niche concept more widely to microbial ecology should open many novel perspectives, especially to tackle global change challenges.