Greenhouse vegetable production plays a vital role in providing year‐round fresh vegetables to global markets, achieving higher yields, and using less water than open‐field systems, but at the expense of increased energy demand. This study examines the life cycle environmental and economic impacts of integrating semitransparent organic photovoltaics (OPVs) into greenhouse designs. We employ life cycle assessment to analyze six environmental impacts associated with producing greenhouse‐grown tomatoes in a Solar PoweRed INtegrated Greenhouse (SPRING) compared to conventional greenhouses with and without an adjacent solar photovoltaic array, across three distinct locations. The SPRING design produces significant reductions in environmental impacts, particularly in regions with high solar insolation and electricity‐intensive energy demands. For example, in Arizona, global warming potential values for a conventional, adjacent PV and SPRING greenhouse are found to be 3.71, 2.38, and 2.36 kg CO2 eq/kg tomato, respectively. Compared to a conventional greenhouse, the SPRING design may increase life cycle environmental burdens in colder regions because the shading effect of OPV increases heating demands. Our analysis shows that SPRING designs must maintain crop yields at levels similar to conventional greenhouses in order to be economically competitive. Assuming consistent crop yields, uncertainty analysis shows average net present cost of production across Arizona to be $3.43, $3.38, and $3.64 per kg of tomato for the conventional, adjacent PV and SPRING system, respectively.