Purpose Environmental impact evaluation in the food sector is a key topic, due to both stricter legislations and higher consumer awareness towards sustainable choices. The case of chocolate is a remarkable example, owing to the increasing demand and the complex production process from cocoa beans to final bars. The present study aims at assessing the environmental impacts related to three chocolate types (dark, milk and white) through life cycle assessment (LCA) methodology. Methods Consistent with food Product Category Rules (PCRs) and previous LCA literature, the study follows a cradle to grave approach. Among different raw material productions, it focuses above all on cocoa farming assuming three possible producer countries (i.e. Ghana, Ecuador and Indonesia), so that the influence of specific weather conditions and soil properties is underlined. Since the manufacturing step is supposed in the North Italian factory, different transport distances are also taken into account. Moreover, the work focuses on the possible use of several packaging materials and following disposal issues. In view of the open discussion about the most suitable functional unit in food sector, mass and energy amount approaches are compared. Results and discussion Along chocolate supply chain, different phases are evaluated according to LCA methodology. Among analyzed producer countries: Indonesia monoculture case results to be the most impacting situation, due to an intensive use of agrochemicals; pesticides give a wide contribution in Ecuador, whereas Ghana is penalized by the highest water consumption. The transport of beans to manufacturing plant influences mostly the GWP, owing to long travelled distances. Considering the whole production process, cocoa derivatives and milk powder are the main contributors to every impact category. From packaging point of view, the best solution is the use of a single polypropylene layer. A sensitivity analysis is performed to check the validity of different allocation procedures: both mass and energy content allocations lead to similar results. Conclusions Through LCA methodology, the life cycle of dark, milk and white chocolate is compared. The study assesses different potential environmental impacts, assuming mass and energy content as possible functional units and references for allocation procedures. For all combinations of functional units and allocation rules, dark chocolate globally presents the best environmental performance, whereas the other two types have similar environmental impacts.