2019
DOI: 10.1002/tee.22868
|View full text |Cite
|
Sign up to set email alerts
|

Environmental sound processing and its applications

Abstract: As part of the effort to develop techniques for understanding environments using sound, many studies in the field of computational auditory scene analysis have focused on using computers to perform functions carried out naturally by the human auditory system. Thanks to recent progress in machine‐learning techniques, these environmental sound‐processing techniques have significantly improved and a widening variety of applications has resulted in considerable interest in this field. In this review, we introduce … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2021
2021
2023
2023

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 95 publications
0
2
0
1
Order By: Relevance
“…Related Surveys and Differences. While several comprehensive surveys delve into the applications of deep learning for audio processing [11,28,53,54], including speech [25,26], music [55][56][57], and other categories [58,59], none concentrate on the advent and deployment of LLMs in this field. Numerous surveys exist that cover the vast landscape of LLMs, each focusing on specific aspects or applications.…”
Section: Speechmentioning
confidence: 99%
“…Related Surveys and Differences. While several comprehensive surveys delve into the applications of deep learning for audio processing [11,28,53,54], including speech [25,26], music [55][56][57], and other categories [58,59], none concentrate on the advent and deployment of LLMs in this field. Numerous surveys exist that cover the vast landscape of LLMs, each focusing on specific aspects or applications.…”
Section: Speechmentioning
confidence: 99%
“…(Park & Kaneko, 2000;Yamoaka et al, 2002; Metode akustik tomografi pesisir ini juga dapat digunakan untuk memantau kondisi fisik perairan (Park & Kaneko, 2000;Yamoaka et al, 2002;. Penelitian terkait kebisingan lingkungan merupakan tantangan yang unik yang menawarkan alternatif penyelesaian masalah terkait observasi kondisi lingkungan perairan dengan cara menganalisa propagasi gelombang dan pemrosesan sinyal (Miyazaki et al, 2019). Untuk ringkasnya, penelitian ini bertujuan untuk melakukan karakterisasi dari fenomena-fenomena kelautan melalui analisa data kebisingan lingkungan yang terekam sebagai sinyal ESN, melalui pemahaman fisika gelombang, fenomenafenomena ini dapat teridentifikasi kemunculanya dan berkaitan erat dengan perubahan lingkungan seperti hujan lokal, lalu lintas perairan maupun sinyal-sinyal bawah laut.…”
Section: Pendahuluanunclassified
“…The groundwork for this advance was laid, at least in part, by developments in computing technologies and ML improvements in other domains such as computer vision and image processing. A few examples of acoustical ML problems include the recognition and interpretation of human speech (Graves et al, 2013;Hinton et al, 2012;Nassif et al, 2019), classification of animal vocalizations (Acevedo et al, 2009;Aide et al, 2013;Bermant et al, 2019;Hildebrand et al, 2019;Moln ar et al, 2008;Shiu et al, 2020;Vickers et al, 2021), classification of music genre (Costa et al, 2017;Fu et al, 2011;Tzanetakis and Cook, 2002), localization of sound sources (Adavanne et al, 2019;Ferguson et al, 2018;Niu et al, 2017a,b;Sun et al, 2018), inference from physical acoustic measurements (Abord an and Szab o, 2021; Bianco and Gerstoft, 2017;Li et al, 2021;Piccolo et al, 2019), and classification of acoustic scenes and events (Abeßer, 2020;Mesaros et al, 2018;Miyazaki et al, 2019).…”
Section: Introductionmentioning
confidence: 99%