Humanity faces an unprecedented survival challenge: climate change, driven by the depletion of natural resources, excessive waste generation, and deforestation. Six out of nine planetary boundaries have been exceeded, signaling that Earth is far from a safe operating space for humanity. In this Viewpoint Article we explore three critical “atomic‐molecular” challenges: Earth's limited atomic resources, its oxidative nature, and very rich chemistry. Addressing these requires a transformation in how we produce and consume, emphasizing sustainable practices aligned with the United Nations’ 17 goals. The advancement of science and technology has extended human life expectancy and improved quality of life. However, to ensure a sustainable future, we must move towards less oxidative chemical processes, incorporate CH4−CO2 redox chemistry into the circular economy, and transition from a linear, fossil fuel‐dependent economy to a circular bioeconomy. Reforestation and the recovery of degraded lands are essential, alongside the shift towards green and sustainable chemistry. Earth's dynamic chemistry is governed by the principles of thermodynamics and kinetics, but science alone is insufficient. Achieving global sustainability requires coordinated economic, political, and social decisions that recognize Earth's limited resources and oxidative nature. Together, these efforts will position humanity to meet the challenges of climate change and secure a sustainable future.