The need for valuable land has encouraged reclamation in coastal areas worldwide in the past decades. Land reclamation can alter the groundwater quality in coastal aquifers. The purpose of this study is to identify the effect of land reclamation on groundwater chemistry, especially the major ions, and heavy metals on Zhoushan Island, China. The subsurface media on the island is composed of two layers, i.e., an upper infill layer and an underlain clay layer. The upper layer is previously ocean and filled with various materials. The clay layer is the original marine sediment. The dominated Na and Cl ions in groundwater illustrate high salinity sources of groundwater in the subsurface of the reclaimed land. A mixing trend between seawater and river water of the groundwater in infill layer is also detected based on the ratios of Cl and Br. Though the heavy metal concentrations (Cd, Cr, Zn and Hg) are high in marine sediments, no significant releasing trends in the groundwater are detected in a short-term after reclamation (based on standard GB18668). Meanwhile, Fe-III concentrations in the aquifer have a strong correlation with precipitation events. Column desorption experiments and simulations indicate the Cd and Cr release from the sediment would pose a health risk when the groundwater in the infill layer being gradually flushed by fresh water. These results provide a foundation for the prediction of groundwater quality and are helpful for the future water management in a newly reclaimed land.