SUMMARYThe Edwards artesian aquifer occurs in cavernous limestones of Cretaceous (Albian) age within the Balcones fault zone in south-central Texas. The major recharge and discharge zones of the aquifer are contained within the upper reaches of three river systems: the Nueces, the San Antonio, and the Guadalupe. Within these watersheds, recharge dominates in the semiarid Nueces basin to the west while most discharge occurs farther east from wells in the subhumid San Antonio basin and from springs in the subhumid Guadalupe basin. This long-distance transfer of ground water (up to 240 km) is a result of several factors: depositional and early diagenetic history of the limestone host rock, geometry and magnitudes of fault displacement, and physiographic responses to faulting.The loci of greatest discharge from the aquifer occur in an area that was exposed subaerially with concomitant porosity enhancement due to dissolution of limestone during late Early Cretaceous time. This area also was subjected to the greatest fault displacement during Miocene time. Thus, faults and associated joints superimposed additional avenues for porosity and permeability development onto an area that already had considerable secondary porosity. Further determinants on aquifer properties resulted from late Tertiary and Quaternary drainage evolution in response to faulting along the Balcones trend. The strike of the fault zone lay at acute angles to the courses of the main trunk streams in the ancestral Guadalupe and San Antonio River systems, whereas in the Nueces basin the trend of the fault zone was normal to the courses of the main streams. Thus, as a fault-line scarp began to form in the eatern basins, scarp-normal streams were incised rapidly into northwest-trending canyons. These steep-gradient streams captured the eastward-flowing major streams in the easten watersheds. These pirate streams incised into the aquifer at the lowest topographic levels within the region because of: 1. The sudden acquisition of extensive catchment areas in a subhumid area; and 2. Steep stream gradients that reflected the larger fault displacement in the east. The low topographic points of discharge became the loci of major springs.Recharge is dominant in the Nueces basin mainly because streams cross permeable limestone units at higher topographic levels than in the San Antonio and Guadalupe basins. The topographic characteristics of the Nueces watershed resulted from a combination of diverse @,ctors: lesser fault displacement, no major stream piracy, and less vigorous erosion because of a semiarid climate.