Among various materials available for alleviating the corrosion-related degradation, thermal sprayed Fe-based metallic glass coatings (MGCs) have received huge attention from the scientific community due to the exceptional combination of mechanical and corrosion properties, along with commercially attractive low material cost of this particular alloy system. Emerging reports on the thermal sprayed Fe-based MGCs outperforming conventional corrosion-resistant materials and coatings have accelerated further exploration of this domain, resulting in an immense increase of research activities over the last few decades producing fascinating results. This review takes a holistic approach encompassing an in-depth assessment of all the relevant salient work till date, including corrosion properties, corresponding degradation mechanisms, metallurgical and environmental factors with reference to passive film dynamics and/or formation of corrosion products. Moreover, various strategies for improved corrosion properties and recent research progress have been reviewed with an attempt to identify the present knowledge gaps and the future research directions.