The last decade of research in the physical sciences has seen a dramatic increase in the study of nanoscale materials. Today, "nanoscience" has emerged as a multidisciplinary effort, wherein obtaining a fundamental understanding of the optical, electrical, magnetic, and mechanical properties of nanostructures promises to deliver the next generation of functional materials for a wide range of applications. While this range of efforts is extremely broad, much of the work has focused on "hard" materials, such as Buckyballs, carbon nanotubes, metals, semiconductors, and organic or inorganic dielectrics. Meanwhile, the soft materials of current interest typically include conducting or emissive polymers for "plastic electronics" applications. Despite the continued interest in these established areas of nanoscience, new classes of soft nanomaterials are being developed from more traditional polymeric constructs. Specifically, nanostructured hydrogels are emerging as a promising group of materials for multiple biotechnology applications as the need for advanced materials in the post-genomic era grows. This review will present some of the recent advances in the marriage between water-swellable networks and nanoscience.