The δ(18)O value of the p-hydroxy group of L-tyrosine depends on the biosynthesis by plants or animals, respectively. In animal proteins it reflects the diet and is therefore an absolute indicator for illegal feeding with meat and bone meal. The aim of this investigation was to perform the positional (18)O determination on L-tyrosine via a one-step enzymatic degradation. Proteins from plants, herbivores, omnivores, and carnivores were characterized by their δ(13)C, δ(15)N, and δ(18)O values, the latter for normalizing the positional δ(18)O values. Their L-tyrosine was degraded by tyrosine phenol lyase to phenol, analyzed as (2,4,6)-tribromophenol. Degradation by tyrosine decarboxylase yielded tyramine. The δ(18)O values of both analytes corresponded to the trophic levels of their sources but were not identical, probably due to an isotope effect on the tyrosine phenol lyase reaction. Availability of the enzyme, easy control of the reaction, and isolation of the analyte are in favor of tyrosine decarboxylase degradation as a routine method.