Background
Acute myocardial infarction (AMI) is a significant clinical challenge. Semaglutide has therapeutic potential in cardiovascular disease management, but its specific impact and mechanisms in AMI are not fully understood.
Methods
Twenty-four male Sprague-Dawley rats were divided into three groups: control (Control), infarction-only (MI), and semaglutide-treated (SEMA). Weight, blood glucose, and lipid profiles were analyzed. Cardiac function was evaluated via echocardiography. Histopathological assessment and immunohistochemical analysis were performed. Untargeted metabolomic analysis using LC-MS/MS was utilized.
Results
Semaglutide treatment was associated with a reduction in body weight, blood glucose, total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C), as well as an enhancement in the left ventricular ejection fraction (Control vs MI vs SEMA, 69.13±4.30 vs 30.16±3.17 vs 39.81±6.13, P < 0.05). It also had a lower collagen volume fraction (3.05 vs 34.05 vs 17.73, P < 0.05) and ameliorated the accumulation of glycogen in the myocardium. Metabolomic profiling revealed differentially expressed metabolites between the control/MI and MI/SEMA groups, predominantly within benzenoid, lipid, and organic acid categories. Pathway enrichment analysis highlighted amino sugar and nucleotide sugar metabolism, chlorocyclohexane and chlorobenzene degradation, and phenylalanine, tyrosine, and tryptophan biosynthesis. Random forest analysis identified key metabolites, including downregulated Docusate sodium, 1-(2-Thienyl)-1-heptanone, and Adenylyl-molybdopterin, alongside upregulated Methylenediphosphonic acid, Choline sulfate, and Lactosamine.
Conclusion
Semaglutide significantly ameliorated myocardial fibrosis and metabolic dysregulation in rats post-myocardial infarction. Its mechanism involves modulating glucose metabolism, lipid metabolism, and organic acid metabolism. Targeted metabolites, including Docusate sodium, 1-(2-Thienyl)-1-heptanone, Adenylyl-molybdopterin, Methylenediphosphonic acid, Choline sulfate, and Lactosamine, are implicated in the metabolic reprogramming induced by semaglutide.