This study explored the enantiocomplementary bioreduction in substituted 1-(arylsulfanyl)propan-2-ones in batch mode using four wild-type yeast strains and two different recombinant alcohol dehydrogenases from Lactobacillus kefir and Rhodococcus aetherivorans. The selected yeast strains and recombinant alcohol dehydrogenases as whole-cell biocatalysts resulted in the corresponding 1-(arylsulfanyl)propan-2-ols with moderate to excellent conversions (60–99%) and high selectivities (ee > 95%). The best bioreductions—in terms of conversion (>90%) and enantiomeric excess (>99% ee)—at preparative scale resulted in the expected chiral alcohols with similar conversion and selectivity to the screening reactions.