Summary. Direct fibrinolytics are proteolytic enzymes that degrade fibrin without requiring an intermediate step of plasminogen activation. This review summarizes the current information available for five such agents, namely, plasmin (the prototypical form), three derivatives of plasmin (mini‐plasmin, micro‐plasmin, and delta‐plasmin), and alfimeprase, a recombinant variant of a snake venom α‐fibrinogenase, fibrolase. Biochemical attributes of molecular size, fibrin binding and inhibitor neutralization are compared. Preclinical investigations that assess the potential for thrombolytic efficacy in vitro and in animal models of vascular occlusion and for hemostatic safety in animal models of bleeding are detailed. Clinical potential has been assessed in patients with peripheral arterial and graft occlusion, acute ischemic stroke, and access catheter and hemodialysis shunt occlusions. The direct fibrinolytic agents have impressive biochemical and preclinical foundations for ultimate clinical application. However, clinical trial results for micro‐plasmin and alfimeprase have not measured up to their anticipated benefit. Plasmin has thus far shown encouraging hemostatic safety, but efficacy data await completion of clinical trials. Whether direct fibrinolytics will provide clinical superiority in major thrombotic disorders over currently utilized indirect fibrinolytics such as tissue plasminogen activator remains to be determined.