Background: Chondroitin/dermatan sulfate (CS/DS) proteoglycans present in the extracellular matrix have important structural and regulatory functions. Results: Six human genes have previously been shown to catalyze CS/DS polymerization. Here we show that one of these genes, chpf, is represented by two copies in the zebrafish genome, chpfa and chpfb, while the other five human CS/DS glycosyltransferases csgalnact1, csgalnact2, chpf2, chsy1, and chsy3 all have single zebrafish orthologues. The putative zebrafish CS/DS glycosyltransferases are spatially and temporally expressed. Interestingly, overlapping expression of multiple glycosyltransferases coincides with high CS/DS deposition. Finally, whereas the relative levels of the related polysaccharide HS reach steady-state at around 2 days post fertilization, there is a continued relative increase of the CS amounts per larvae during the first 6 days of development, matching the increased cartilage formation. Conclusions: There are 7 CS/DS glycosyltransferases in zebrafish, which, based on homology, can be divided into the CSGALNACT, CHSY, and CHPF families. The overlap between intense CS/DS production and the expression of multiple CS/DS glycosyltransferases suggests that efficient CS/DS biosynthesis requires a combination of several glycosyltransferases. Developmental Dynamics 242:964-975, 2013. V C 2013 Wiley Periodicals, Inc.Key words: chondroitin sulfate; polymerase; CSGALNACT; CHSY; CHPF; zebrafish
Key Findings:The zebrafish genes csgalnact1, csgalnact2, chsy1, chsy3, chpf2, chpfa, and chpfb are orthologues to the human genes that mediate CS/DS polymerization. Chordate CS/DS glycosyltransferases may be divided into the CSGALNACT, CHSY, and CHPF families. Sites of high CS/DS production in zebrafish embryos are characterized by the overlapping expression of multiple CS/DS producing glycosyltransferases. The content of CS/DS per fish is massively increased during zebrafish larval development whereas the heparan sulfate content gets stabilized around 48 hpf.