β-Phosphoglucomutase (βPGM) catalyzes isomerization of β-Dglucose 1-phosphate (βG1P) into D-glucose 6-phosphate (G6P) via sequential phosphoryl transfer steps using a β-D-glucose 1,6-bisphosphate (βG16BP) intermediate. Synthetic fluoromethylenephosphonate and methylenephosphonate analogs of βG1P deliver novel step 1 transition state analog (TSA) complexes for βPGM, incorporating trifluoromagnesate and tetrafluoroaluminate surrogates of the phosphoryl group. Within an invariant protein conformation, the β-D-glucopyranose ring in the βG1P TSA complexes (step 1) is flipped over and shifted relative to the G6P TSA complexes (step 2). Its equatorial hydroxyl groups are hydrogen-bonded directly to the enzyme rather than indirectly via water molecules as in step 2. The (C)O-P bond orientation for binding the phosphate in the inert phosphate site differs by ∼30°between steps 1 and 2. By contrast, the orientations for the axial O-Mg-O alignment for the TSA of the phosphoryl group in the catalytic site differ by only ∼5°, and the atoms representing the five phosphorus-bonded oxygens in the two transition states (TSs) are virtually superimposable. The conformation of βG16BP in step 1 does not fit into the same invariant active site for step 2 by simple positional interchange of the phosphates: the TS alignment is achieved by conformational change of the hexose rather than the protein.phosphonate analogs | phosphoryl transfer mechanism | 19 F NMR | X-ray crystallography | water-mediated substrate recognition E fficient enzyme catalysis of the manipulation of phosphates is one of the great achievements of evolution (1). Enzymes that operate on phosphate monoesters and anhydrides transfer the phosphoryl moiety, PO 3 − , with rate accelerations approaching 10 21 for monoesters, placing them among the most proficient of all enzymes (1). Phosphomutases, including α-phosphoglucomutase (αPGM) (2, 3) and β-phosphoglucomutase (βPGM) (4-6), phosphoglycerate mutase (7), α-phosphomannomutase (αPMM/PGM) (8), and N-acetylglucosamine-phosphate mutase (9), merit special attention because these enzymes have to be effective in donating a phosphoryl group to either of two hydroxyl groups that have intrinsically different reactivity. Only when both half-reactions of a phosphomutase are accessible to mechanistic analysis can the problem of how an enzyme accommodates two distinct chemistries within a single active site be resolved. Hexose 1-phosphate mutases, including enzymes central to glycolysis and other metabolic pathways, are well characterized (10, 11). They are generally activated by phosphorylation to form a covalent phosphoenzyme, which then donates its PO 3 − group to either of its substrates to deliver a common, transient, hexose 1,6-bisphosphate intermediate species. However, structural studies on phosphomutases are complicated by the rapid and often imbalanced equilibrium position between the substrates, and kinetic studies are problematic because of competitive, parallel pathways of enzyme activation and substrate inhibition (12, ...