The mitochondrial amidoxime-reducing component (mARC) is one of the simplest molybdenum-containing enzymes. mARC is among a few known reducing enzymes playing an important role in drug metabolism in mammals. Here, an assay based on the fluorescence of NADH is reported for the rapid detection of substrates and potential inhibitors of mARC. So far unknown inhibitors might be useful for the development of drugs assigned to nonalcoholic fatty liver disease (NAFLD) and similar diseases. Kinetics of reactions catalyzed by mARC can be recorded with high sensitivity and precision. On a microtiter plate scale, the assay presented could be applied for highthroughput screening of substance libraries and detection of novel mARC substrate candidates. For instance, molnupiravir was also identified as a new substrate by this assay. For better comparison for such substances, the inhibitor or substrate-to-BAO ratio was introduced. After normalization of enzyme activities to the standard benzamidoxime, substrates can reproducibly be classified.