Lemurs in captivity progressively accumulate iron deposits in a variety of organs (hemosiderosis) including duodenum, liver, and spleen throughout their lives. When excessive, the toxic effects of intracellular iron on parenchymal cells, particularly the liver, can result in clinical disease and death. The pathogenesis of excessive iron storage in these species has been attributed to dietary factors related to diets commonly fed in captivity. Tissue iron stores can be directly estimated by tissue biopsy and histologic examination, or quantitated by chemical analysis of biopsy tissue, However, expense and risk associated with anesthesia and surgery prevent routine use of tissue biopsy to assess iron status. A noninvasive means of assessing total body iron stores is needed to monitor iron stores in lemurs to determine whether dietary modification is preventing excessive iron deposition, and to monitor potential therapies such as phlebotomy or chelation. Serum ferritin concentration correlates with tissue iron stores in humans, horses, calves, dogs, cats, and pigs. Serum ferritin is considered the best serum analyte to predict total body iron stores in these species and is more reliable than serum iron or total iron binding capacity, both of which may be affected by disorders unrelated to iron adequacy or excess including hypoproteinemia, chronic infection, hemolytic anemia, hypothyroidism, renal disease, and drug administration. We have developed an enzyme-linked immunosorbent assay to measure serum ferritin in lemurs. The assay uses polyclonal rabbit anti-human ferritin antibodies in a sandwich arrangement. Ferritin isolated from liver and spleen of a black and white ruffed lemur (Varecia variegata variegata) was used as a standard. Ferritin standards were linear from 0 to 50 microg/L. Recovery of purified ferritin from lemur serum varied from 95% to 110%. The within-assay variability was 4.5%, and the assay-to-assay variability for three different samples ranged from 10% to 17%. The assay also measures serum ferritin in several other lemur species.