The front-line assay for the presumptive serodiagnosis of acute Japanese encephalitis virus (JEV) and West Nile virus (WNV) infections is the premembrane/envelope (prM/E)-specific IgM antibody-capture enzyme-linked immunosorbent assay (MAC-ELISA). Due to antibody cross-reactivity, MAC-ELISA-positive samples may be confirmed with a time-consuming plaque reduction neutralization test (PRNT). In the present study, we applied a previously developed anti-nonstructural protein 1 (NS1)-specific MAC-ELISA (NS1-MAC-ELISA) on archived acute-phase serum specimens from patients with confirmed JEV and WNV infections and compared the results with prM/E containing virus-like particle-specific MAC-ELISA (VLP-MAC-ELISA). Pairedreceiver operating characteristic (ROC) curve analyses revealed no statistical differences in the overall assay performances of the VLP-and NS1-MAC-ELISAs. The two methods had high sensitivities of 100% but slightly lower specificities that ranged between 80% and 100%. When the NS1-MAC-ELISA was used to confirm positive results in the VLP-MAC-ELISA, the specificity of serodiagnosis, especially for JEV infection, was increased to 90% when applied in areas where JEV cocirculates with WNV, or to 100% when applied in areas that were endemic for JEV. The results also showed that using multiple antigens could resolve the cross-reactivity in the assays. Significantly higher positive-to-negative (P/N) values were consistently obtained with the homologous antigens than those with the heterologous antigens. JEV or WNV was reliably identified as the currently infecting flavivirus by a higher ratio of JEV-to-WNV P/N values or vice versa. In summary of the above-described results, the diagnostic algorithm combining the use of multiantigen VLP-and NS1-MAC-ELISAs was developed and can be practically applied to obtain a more specific and reliable result for the serodiagnosis of JEV and WNV infections without the need for PRNT. The developed algorithm should provide great utility in diagnostic and surveillance activities in which test accuracy is of utmost importance for effective disease intervention.
Mosquito-borne flaviviruses in the family Flaviviridae are responsible for a number of globally significant diseases and are serologically divided into several complexes, including the Japanese encephalitis virus (JEV), dengue virus (DENV), and yellow fever virus (YFV) serocomplexes (1). JEV and West Nile virus (WNV) are two of the most important members of the JEV serocomplex that have emerged into new geographic ranges in the past years (2, 3). JEV occurs in East, South, and Southeast Asia, where DENV is also commonly distributed, but it has spread from the Indonesian archipelago to Papua New Guinea and the Torres Strait islands of northern Australia, and to new areas in western India and Pakistan (4). WNV is originally endemic in parts of Africa, Europe, the Middle East, West Asia, India, and Australia; it then unexpectedly emerged in New York City in 1999 and rapidly expanded over North America to Central America and fin...