The gneiss complex of Wildhorse Creek (Wildhorse gneiss) forms the central component of the lowest structural plate in the Pioneer metamorphic core complex of south-central Idaho. The oldest rock in the complex is a felsic ortho gneiss, with Neoarchean U-Pb magmatic zircon ages of 2.60-2.67 Ga. The ortho gneiss overlaps in age and is interpreted to be part of the Grouse Creek block of the Albion Mountains to the south. This Archean metagranitoid is structurally interleaved with paragneiss containing quartzite and calc-silicate rock. Structurally below the orthogneiss, some quartzites have multiple concordant populations of detrital-zircon grains as young as ca. 1700 Ma, while others have no zircon grains younger than ca. 2500 Ma. Structurally above the Archean gneiss is a heterogeneous paragneiss that contains calc-silicate and quartzitic rocks with detrital zircons as young as ca. 1460 Ma. Amphibolite in this unit contains zircons dated at ca. 1850 Ma, indicating that this rock can be no older than that and implying considerable structural complexity. The upper part of the Wildhorse gneiss contains metaquartzites bearing zircons as young as ca. 1400 Ma. The protolith of this paragneiss is interpreted as the southernmost exposures of the Lemhi subbasin of the Mesoproterozoic Belt Supergroup. The upper Wildhorse gneiss includes ca. 695 Ma intrusive orthogneiss that is coeval with Neoproterozoic rift-related volcanic or intrusive rocks near Pocatello, House Mountain, and Edwardsburg, Idaho. This Cryogenian meta-intrusive rock is the likely source of the 650-710 Ma detrital-zircon population in the Big Lost River that drains the core complex. Initial εHf values from 675 Ma zircons are between 3.4 and-2.4, suggesting the granitoids had a mixed source in both continental crust and juvenile mantle. PRECAMBRIAN BASEMENT IN THE NORTHERN ROCKIES North of the Snake River Plain, Precambrian metamorphic basement is exposed in the Pioneer Mountains and in isolated areas within the Atlanta lobe of the Idaho batholith to the southwest (Fig. 1 inset) (O'Neill and Pavlis, 1988;