Airway hyperresponsiveness and remodeling are defining features of asthma. We hypothesized that impaired superoxide dismutase (SOD) antioxidant defense is a primary event in the pathophysiology of hyperresponsiveness and remodeling that induces apoptosis and shedding of airway epithelial cells. Mechanisms leading to apoptosis were studied in vivo and in vitro. Asthmatic lungs had increased apoptotic epithelial cells compared to controls as determined by terminal dUTP nick-end labeling-positive cells. Apoptosis was confirmed by the finding that caspase-9 and -3 and poly (ADP-ribose) polymerase were cleaved. On the basis that SOD inactivation triggers cell death and low SOD levels occur in asthma, we tested whether SOD inactivation plays a role in airway epithelial cell death. SOD inhibition increased cell death and cleavage/activation of caspases in bronchial epithelial cells in vitro. Asthma is commonly diagnosed using physiological measures, but alterations in airway structure are the defining features of asthma. Damage to airway epithelium, eosinophil infiltration, smooth muscle hyperplasia, thickening and aberrant collagen, and protein composition of the basement membrane are well established elements of the asthmatic airway. 1,2 The injury to the bronchial epithelium in asthma is marked by loss of columnar epithelial cells. Extensive loss of cells and denuded basement membrane with few basal cells remaining on the airway surface are noted in severe asthma, but shedding of airway epithelium is present even in clinically mild asthma. 2,3 Physical loss of epithelial lining cells is considered one proximate cause of the airway hyperresponsiveness to inhaled mediators, and has been speculated to contribute to asthmatic airway remodeling, in particular abnormal collagen synthesis. Evidence from organ culture systems supports the concept of an epithelial-mesenchymal unit in which loss of epithelium leads to mucosal myofibroblast and fibroblast proliferation, and collagen deposition. 2,4 -6 Thus, if the epithelial injury and loss could be understood and prevented in asthma, the clinical symptoms of airway hyperresponsiveness and long-term progressive sequelae in the airways, which contribute to fixed airflow limitation, might be prevented.Several reports have proposed that loss of epithelial cells is because of apoptosis based on immunostaining for the proteins that regulate apoptosis, or by detection of DNA strand breaks by immunostaining with the terminal dUTP nick-end labeling (TUNEL) assay. 7-11 However, not all reports have confirmed increased TUNEL positivity in airways. 9 Furthermore, if airway epithelial cells are undergoing increased cell death, it is unclear whether this is because of an inherent cell defect or a response to the asthmatic airway environment. Although nonspecific events related to increased levels of reactive oxygen and