Background
Tuberculosis (TB) is a major infectious disease with significant public health implications. Its widespread transmission, prolonged treatment duration, notable side effects, and high mortality rate pose severe challenges. This study examines the epidemiological characteristics of TB globally and across major regions, providing a scientific basis for enhancing TB prevention and control measures worldwide.
Methods
The ecological study used data from the Global Burden of Disease (GBD) Study 2021. It assessed new incidence cases, deaths, disability-adjusted life years (DALYs), and trends in age-standardized incidence rates (ASIRs), mortality rates (ASMRs), and DALY rates for drug-susceptible tuberculosis (DS-TB), multidrug-resistant tuberculosis (MDR-TB), and extensively drug-resistant tuberculosis (XDR-TB) from 1990 to 2021. A Bayesian age-period-cohort model was applied to project ASIR and ASMR.
Results
In 2021, the global ASIR for all HIV-negative TB was 103.00 per 100,000 population [95% uncertainty interval (UI): 92.21, 114.91 per 100,000 population], declining by 0.40% (95% UI: − 0.43, − 0.38%) compared to 1990. The global ASMR was 13.96 per 100,000 population (95% UI: 12.61, 15.72 per 100,000 population), with a decline of 0.44% (95% UI: − 0.61, − 0.23%) since 1990. The global age-standardized DALY rate for HIV-negative TB was 580.26 per 100,000 population (95% UI: 522.37, 649.82 per 100,000 population), showing a decrease of 0.65% (95% UI: − 0.69, − 0.57 per 100,000 population) from 1990. The global ASIR of MDR-TB has not decreased since 2015, instead, it has shown a slow upward trend in recent years. The ASIR of XDR-TB has exhibited significant increase in the past 30 years. The projections indicate MDR-TB and XDR-TB are expected to see significant increases in both ASIR and ASMR from 2022 to 2035, highlighting the growing challenge of drug-resistant TB.
Conclusions
This study found that the ASIR of MDR-TB and XDR-TB has shown an upward trend in recent years. To reduce the TB burden, it is essential to enhance health infrastructure and increase funding in low-SDI regions. Developing highly efficient, accurate, and convenient diagnostic reagents, along with more effective therapeutic drugs, and improving public health education and community engagement, are crucial for curbing TB transmission.
Graphical Abstract