Pseudomonas putida strain P9 is a novel competent endophyte from potato. P9 causes cultivar-dependent suppression of Phytophthora infestans. Colonization of the rhizoplane and endosphere of potato plants by P9 and its rifampin-resistant derivative P9R was studied. The purposes of this work were to follow the fate of P9 inside growing potato plants and to establish its effect on associated microbial communities. The effects of P9 and P9R inoculation were studied in two separate experiments. The roots of transplants of three different cultivars of potato were dipped in suspensions of P9 or P9R cells, and the plants were planted in soil. The fate of both strains was followed by examining colony growth and by performing PCR-denaturing gradient gel electrophoresis (PCR-DGGE). Colonies of both strains were recovered from rhizoplane and endosphere samples of all three cultivars at two growth stages. A conspicuous band, representing P9 and P9R, was found in all Pseudomonas PCR-DGGE fingerprints for treated plants. The numbers of P9R CFU and the P9R-specific band intensities for the different replicate samples were positively correlated, as determined by linear regression analysis. The effects of plant growth stage, genotype, and the presence of P9R on associated microbial communities were examined by multivariate and unweighted-pair group method with arithmetic mean cluster analyses of PCR-DGGE fingerprints. The presence of strain P9R had an effect on bacterial groups identified as Pseudomonas azotoformans, Pseudomonas veronii, and Pseudomonas syringae. In conclusion, strain P9 is an avid colonizer of potato plants, competing with microbial populations indigenous to the potato phytosphere. Bacterization with a biocontrol agent has an important and previously unexplored effect on plant-associated communities.The colonization of plant tissue is of paramount importance for successful application of plant-growth-promoting bacteria. For instance, efficient root colonization was shown to be important for the control of Fusarium oxysporum in tomato by a phenazine-1-carboxamide-producing Pseudomonas chlororaphis strain (6). The migratory response of bacterial inoculants to compounds released by plant roots is often the first step required for establishment of the bacteria in the rhizosphere and rhizoplane (29,48,50). Following the initial colonization by introduced bacteria, these organisms may spread further to the aerial parts of the plant (35). The degree of root colonization by bacterial inoculants depends on, in addition to the mode of application (35), factors intrinsic to the organism used, like the presence of flagella (11) and/or the presence of particular outer membrane lipopolysaccharides (13). Such features may differ from strain to strain. Once attached to plant roots, the inoculant bacteria may evoke "protective" responses in the plants, enabling them to resist phytopathogen attack (4).Endophytic colonization, characterized by colonization of internal plant tissues concomitant with growth and systemic spread, can ...