Background
The
Escherichia coli
sequence type 131 (ST131) is a well established clone causing significant extraintestinal infections worldwide. However, no studies have been reported the phenotypic and molecular traits of ST131 isolates in comparison to other clones of
E. coli
from Iran. So, we determined the differences between 69 ST131 strains collected during a one year surveillance study and 84 non-ST131 isolates, including 56 clinical fluoroquinolone resistant and 28 broiler colibacillosis isolates in terms of clonality and genetic background.
Results
ST131 isolates were associated with phylogroup B2 (68 out of 69 isolates, 98.4%), while clinical non-ST131 and fluoroquinolone resistant broiler isolates mainly belonged to phylogroup A. The highest virulence score was observed in ST131 clone, while they showed less diversity in virulence profiles than other clinical isolates. Almost all of the ST131 isolates (95.6%) were ExPEC and had the highest virulence scores, but their resistance scores were less than clinical non-ST131 isolates. Broiler isolates showed higher prevalence of ExPEC-associated virulence genes and CTX-M-G1/G9 resistance determinants as compared to clinical non-ST131 isolates. While
bla
OXA-48/NDM
carbapenemases were mostly found in ST131 clone, resistance rate against ertapenem was higher among clinical non-ST131 strains. According to ERIC-based fingerprinting, the ST131 strains were more genetically similar, followed by non-ST131 and broiler isolates.
Conclusions
ST131 isolates possess the ability to make a balance between clonality and extent of resistance/virulence genes content, so this phenomenon gives a fitness advantage over other
E. coli
clones. The broilers
E. coli
population poses a potential zoonotic risk which could be transmitted to the community through the food chain. A number of factors are involved in the dissemination of and infections due to ST131 clone.