A 2-year study was done in Oregon to determine the effects of irrigation method and level of water application on the development of root rot in northern highbush blueberry (Vaccinium corymbosum L. ‘Duke’). Plants were grown on mulched, raised beds and irrigated by overhead sprinklers, microsprays, or drip at 50%, 100%, and 150% of the estimated crop evapotranspiration requirement. Soil at the site was a silty clay loam. By the end of the first season, plants were largest with drip, intermediate-sized with microsprays and smallest with sprinklers; however, this was not the case the next season. By the end of year 2, plants irrigated by drip had less canopy cover, fewer new canes, lower pruning weights, and only half the shoot and root dry weight as plants irrigated by sprinklers or microsprays. Destructive sampling revealed that the field was infested by root rot. Less growth with drip was association with higher levels of infection by the root pathogen, Phytophthora cinnamomi. Phytophthora infection increased with water application, regardless of irrigation method, but averaged 14% with drip and only 7% with sprinklers and microsprays. Roots were also infected by Pythium spp. Pythium infection likewise increased with the total amount of water applied but, unlike P. cinnamomi, was similar among irrigation methods. Overall, drip irrigation maintained higher soil water content near the base of the plants than sprinklers and microsprays, resulting in conditions more favorable to root rot. Sprinklers and microsprays may be better alternatives than drip at sites prone to problems with the disease.