ImportanceSurvivors of childhood cancer experience premature aging compared with community controls. The deficit accumulation index (DAI) uses readily available clinical data to measure physiological age in survivors; however, little data exist on how well deficit accumulation represents underlying biological aging among survivors of cancer.ObjectiveTo examine the associations between the DAI and epigenetic age acceleration (EAA) and mean leukocyte telomere length (LTL).Design, Setting, and ParticipantsThis cross-sectional study analyzed data from the St Jude Lifetime Cohort, an assessment of survivors of childhood cancer who were treated at St Jude Children’s Research Hospital in Memphis, Tennessee. Data were collected between 2007 and 2016, assayed between 2014 and 2019, and analyzed between 2022 and 2023. Participants were adult survivors who were diagnosed between 1962 and 2012 and who survived 5 years or more from time of diagnosis. The analyses were restricted to survivors with European ancestry, as there were too few survivors with non-European ancestry.ExposuresThe DAI included 44 aging-related items, such as chronic health conditions and functional, psychosocial, and mental well-being. Item responses were summed and divided by the total number of items, resulting in a ratio ranging from 0 to 1. These DAI results were categorized based on reported associations with hospitalization and mortality: low, defined as a DAI less than 0.2; medium, defined as a DAI of 0.2 to less than 0.35; and high, defined as a DAI of 0.35 or higher.Main Outcomes and MeasuresGenome-wide DNA methylation was generated from peripheral blood mononuclear cell–derived DNA. The EAA was calculated as the residuals from regressing the Levine epigenetic age on chronological age. The mean LTL was estimated using whole-genome sequencing data.ResultsThis study included 2101 survivors of childhood cancer (1122 males [53.4%]; mean [SD] age, 33.9 [9.1] years; median [IQR] time since diagnosis, 25.1 [18.7-31.9] years) with European ancestry. Compared with survivors in the low DAI group, those in the high DAI group experienced 3.7 more years of EAA (β = 3.66; 95% CI, 2.47-4.85; P < .001), whereas those in the medium DAI group experienced 1.8 more years of EAA (β = 1.77; 95% CI, 0.84-2.69; P < .001), independent of treatment exposures. The EAA and DAI association was consistent across 3 common diagnoses (acute lymphoblastic leukemia, Hodgkin lymphoma, and central nervous system tumors) and across chronological age groups. For example, among acute lymphoblastic leukemia survivors, those in the medium DAI group (β = 2.27; 95% CI, 0.78-3.76; P = .001) experienced greater EAA vs those in the low DAI group. Similarly, among survivors younger than 30 years, the high DAI group experienced 4.9 more years of EAA vs the low DAI group (β = 4.95; 95% CI, 2.14-7.75; P < .001). There were no associations between mean LTL residual and the DAI.Conclusions and RelevanceThis cross-sectional study of survivors of childhood cancer showed that the DAI was associated with EAA, suggesting an underlying biological process to the accumulation of deficits. Both the DAI and EAA were effective at identifying aging phenotypes, and either may be used to measure aging and response to interventions targeting aging pathways.