The molecular mechanism underlying temperature-dependent sex determination (TSD) has been a long-standing mystery; in particular, the thermosensitive genetic triggers for gonadal sex differentiation are largely unknown. Here, we have characterized a conserved DM domain gene, Dmrt1, in the red-eared slider turtle Trachemys scripta (T. scripta), which exhibits TSD. We found that Dmrt1 has a temperature-dependent, sexually dimorphic expression pattern, preceding gonadal sex differentiation, and is capable of responding rapidly to temperature shifts and aromatase inhibitor treatment. Most importantly, loss-and gain-of-function analyses provide solid evidence that Dmrt1 is both necessary and sufficient to initiate male development in T. scripta. Furthermore, the DNA methylation dynamics of the Dmrt1 promoter are tightly correlated with temperature and could mediate the impact of temperature on sex determination. Collectively, our findings demonstrate that Dmrt1 is a candidate master male sex-determining gene in this TSD species, consistent with the idea that DM domain genes are conserved during the evolution of sex determination mechanisms.