Cellular senescence guards against cancer and modulates aging; however, the underlying mechanisms remain poorly understood. Here, we show that genotoxic drugs capable of inducing premature senescence in normal and cancer cells, such as 5-bromo-2 0 -deoxyuridine (BrdU), distamycin A (DMA), aphidicolin and hydroxyurea, persistently activate Janus kinase-signal transducer and activator of transcription (JAK/STAT) signaling and expression of interferon-stimulated genes (ISGs), such as MX1, OAS, ISG15, STAT1, PML, IRF1 and IRF7, in several human cancer cell lines. JAK1/STAT-activating ligands, interleukin 10 (IL10), IL20, IL24, interferon c (IFNc), IFNb and IL6, were also expressed by senescent cells, supporting autocrine/paracrine activation of JAK1/STAT. Furthermore, cytokine genes, including proinflammatory IL1, tumor necrosis factor and transforming growth factor families, were highly expressed. The strongest inducer of JAK/STAT signaling, cytokine production and senescence was BrdU combined with DMA. RNA interference-mediated knockdown of JAK1 abolished expression of ISGs, but not DNA damage signaling or senescence. Thus, although DNA damage signaling, p53 and RB activation, and the cytokine/ chemokine secretory phenotype are apparently shared by all types of senescence, our data reveal so far unprecedented activation of the IFNb-STAT1-ISGs axis, and indicate a less prominent causative role of IL6-JAK/STAT signaling in genotoxic drug-induced senescence compared with reports on oncogene-induced or replicative senescence. These results highlight shared and unique features of drug-induced cellular senescence, and implicate induction of cancer secretory phenotype in chemotherapy.