This paper presents a literature survey for electroencephalogram (EEG) signal classification approaches based on machine learning algorithms. EEG classification plays a vital role in many health applications using machine learning algorithms. Mainly, they group and classify patient signals based on learning and developing specific features and metrics. In this paper, 32 highly reputed research publications are presented focusing on the designed and implemented approach, applied dataset, their obtained results and applied evaluation. Furthermore, a critical analysis and statement are provided for the surveyed papers and an overall analysis in order to have all the papers under an evaluation comparison. SVM, ANN, KNN, CNN, LDA, multi-classifier and more other classification approaches are analyzed and investigated. All classification approaches have shown potential accuracy in classifying EEG signals. Evidently, ANN has shown higher persistency and performance than all other models with 97.6% average accuracy.