This paper proposes a unified comprehension of the isothermal ceramic process kinetics stemming from mesoscopic irreversible thermodynamics. Accordingly, a unified process kinetic equation (UPKE) is derived, which predicts that the global isothermal process rate of any ceramic process is, in general, nonlinearly related both to its activation energy and its affinity. Nevertheless, for a low-affinity ceramic process conducted either in a field-free or resonant wave-field condition, its global isothermal rate, according to the proposed UPKE, is approximately linearly related to its affinity in the spirit of Fick's diffusion law. Therefore, the rate enhancement of a low-affinity process occurring in any resonant wave-field may be caused either by a reduction in activation energy, as in microwave-enhanced sintering, or by activation energy reduction along with an affinity augmentation, as in microwaveassisted glass-crystallization. Conversely, for a high-affinity ceramic process, e.g., a chemical reaction, the 'degenerate' UPKE predicts that its kinetics is exclusively dictated by the activation energy in the spirit of Arrhenius's rate law. Hence, isothermal rate enhancements of chemical reactions in ceramic processing under resonant wave-field conditions are believed to predominantly result from a field-induced reduction in activation energy.