We show that for each $$n\ge 2\in {\mathbb {N}}$$
n
≥
2
∈
N
, the varieties $${\mathbb {V}}_{n}=[x_1x_2x_3=x_1^nx_{i_1}x_{i_2}x_{i_3}]$$
V
n
=
[
x
1
x
2
x
3
=
x
1
n
x
i
1
x
i
2
x
i
3
]
where i is any non-trivial permutation of $$\{1,2,3\}$$
{
1
,
2
,
3
}
are closed. Further, we show that for each $$n\in {\mathbb {N}}$$
n
∈
N
, the varieties $${\mathcal {V}}_{n}=[x_1x_2x_3=x_1^nx_{i_1}x_{i_2}x_{i_3}]$$
V
n
=
[
x
1
x
2
x
3
=
x
1
n
x
i
1
x
i
2
x
i
3
]
where i is any non-trivial permutation of $$\{1,2,3\}$$
{
1
,
2
,
3
}
other than the permutation (231) are closed.