Terrestrial gastropods do not only inhabit humid and cool environments but also habitat in which hot and dry conditions prevail. Snail species that are able to cope with such climatic conditions are thus expected to having developed multifaceted strategies and mechanisms to ensure their survival and reproduction under heat and desiccation stress. This review paper aims to provide an integrative overview of the numerous adaptation strategies terrestrial snails have evolved to persist in hot and dry environments as well as their mutual interconnections and feedbacks, but also to outline research gaps and questions that remained unanswered. We extracted relevant information from more than 140 publications in order to show how biochemical, cellular, physiological, morphological, ecological, thermodynamic, and evolutionary parameters contribute to provide an overall picture of this classical example in stress ecology. These mechanisms range from behavioral and metabolic adaptations, including estivation, to the induction of chaperones and antioxidant enzymes, mucocyte and digestive gland cell responses and the modification and frequency of morphological features, particularly shell pigmentation. In this context, thermodynamic constraints call for processes of complex adaptation at varying levels of biological organization that are mutually interwoven. We were able to assemble extensive, mostly narrowly focused information from the literature into a web of network parameters, showing that future work on this subject requires multicausal thinking to account for the complexity of relationships involved in snails' adaptation to insolation, heat, and drought.