We present a brief review on the use of ionized and pulsed vapour fluxes, primarily generated by high power impulse magnetron sputtering (HiPIMS) discharges, as tools to gain atomistic understanding on film nucleation and growth. Two case studies are considered; the first case study concerns stress generation in polycrystalline films. It is highlighted that by using vapour fluxes of well-controlled ion content and ion energy and by studying the film microstructure and intrinsic stresses one can obtain experimental evidence for stress generation by insertion of film forming species in the grain boundaries. In the second case study it is discussed how the use of pulsed vapour fluxes with well controlled time domain can facilitate understanding of growth dynamics and microstructural evolution in thin films grown in three-dimensional (i.e., Volmer-Weber) fashion. Broader implications of the described research strategies for the surface science and surface engineering communities are highlighted and discussed.2