The thermal and chemical stabilities of group-III sesquioxides (Al2O3, Ga2O3, and In2O3) were comparatively investigated at an atmospheric pressure at heat treatment temperatures ranging from 250 to 1450 °C in a flow of either N2 or H2. In a flow of N2, the thermal decomposition of α-Al2O3 was not observed at the temperatures investigated, while the decompositions of β-Ga2O3 and c-In2O3 occurred above 1150 and 1000 °C, respectively, with no generation of group-III metal droplets on the surfaces. In contrast, the chemical reactions of α-Al2O3, β-Ga2O3, and c-In2O3 began at low temperatures of 1150, 550, and 300 °C in a flow of H2. Thus, the presence of H2 in the gas flow significantly promotes the decomposition of group-III sesquioxides. The order of thermal and chemical stabilities (α-Al2O3 ≫ β-Ga2O3 > c-In2O3) obtained experimentally was verified by thermodynamic analysis, which also clarified dominant decomposition reactions of group-III sesquioxides.