Objective: The study aimed to identify potential cell signaling pathways and protein targets of actions of atractylodin and β-eudesmol in cholangiocarcinoma, the two active compounds isolated from Atracylodes lancea using proteomics approach. Method: The cholangiocarcinoma cell line, CL-6, was treated with each compound for 3 and 6 hours, and the proteins from both intra-and extracellular components were extracted. LC-MS/MS was applied following the separation of the extract proteins by SDS-PAGE and digestion with trypsin. Signaling pathways and protein expression were analyzed by MASCOT and STITCH software. Results: A total of 4,323 and 4,318 proteins were identified from intra-and extracellular components, respectively. Six and 4 intracellular proteins were linked with the signaling pathways (apoptosis, cell cycle control, and PI3K-AKT) of atractylodin and β-eudesmol, respectively. Four and 3 extracellular proteins were linked with the signaling pathways (NF-κB and PI3K-AKT) of atractylodin and β-eudesmol, respectively. Conclusion: In conclusion, a total of 17 proteins associated with four cell signaling pathways that could be potential molecular targets of anticholangiocarcinoma action of atractylodin and β-eudesmol were identified through the application of proteomics approach.