Although glycolysis is highly conserved, it is remarkable that several unique isozymes in this central metabolic pathway are found in mammalian sperm. Glyceraldehyde 3-phosphate dehydrogenase-S (GAPDS) is the product of a mouse gene expressed only during spermatogenesis and, like its human ortholog (GAPD2), is the sole GAPDH isozyme in sperm. It is tightly bound to the fibrous sheath, a cytoskeletal structure that extends most of the length of the sperm flagellum. We disrupted Gapds expression by gene targeting to selectively block sperm glycolysis and assess its relative importance for in vivo sperm function. Gapds ؊/؊ males were infertile and had profound defects in sperm motility, exhibiting sluggish movement without forward progression. Although mitochondrial oxygen consumption was unchanged, sperm from Gapds ؊/؊ mice had ATP levels that were only 10.4% of those in sperm from WT mice. These results imply that most of the energy required for sperm motility is generated by glycolysis rather than oxidative phosphorylation. Furthermore, the critical role of glycolysis in sperm and its dependence on this sperm-specific enzyme suggest that GAPDS is a potential contraceptive target, and that mutations or environmental agents that disrupt its activity could lead to male infertility. glycolysis ͉ gene targeting ͉ infertility S perm motility is essential for normal fertilization, and asthenozoospermia, or low sperm motility, is common in infertile men. In a recent study of 1,085 sperm samples from infertile men, 81% had defects in motility, and 19% had asthenozoospermia without other defects in sperm number or morphology (1). Motility is generated by the extremely long flagellum that comprises Ͼ90% of the length of a mammalian sperm. This process requires substantial ATP to support coordinated movement of the central axoneme and surrounding flagellar structures (2). ATP is hydrolyzed by dynein ATPases, which function as force-generating molecular motors along the axoneme. Although quiescent in the epididymis, mammalian sperm display vigorous forward movement, termed activated or progressive motility, immediately upon ejaculation or collection into physiological medium. The motility waveform changes in the female reproductive tract, with increases in both the amplitude and asymmetry of flagellar bending. These changes result in a whiplash-like motion, termed hyperactivated motility, which facilitates sperm transport in the oviduct and penetration of the zona pellucida surrounding the oocyte (3).Potential sources of ATP to support sperm motility are compartmentalized in distinct regions along the length of the flagellum. Oxidative phosphorylation is confined to the proximal segment of the flagellum where the mitochondria are localized (middle piece). In contrast, glycolysis appears to be restricted to the principal piece, which is distal to the middle piece and is the longest segment of the sperm flagellum (4-8). Several glycolytic enzymes in mammalian sperm are distinct from the isozymes present in somatic tissues. Thr...