Many bacterial pathogens have the ability to induce apoptosis in their hosts. It was previously shown that Nocardia asteroides strain GUH-2, a Gram-positive facultatively intracellular pathogen, is capable of inducing the apoptotic death of dopaminergic cells in the murine brain and in PC12 cells, a rat cell line. In this study, the apoptosis-inducing potential of N. asteroides GUH-2 was further explored using HeLa cells, a human epithelial cell line. HeLa cells were incubated for 5 hours with live nocardiae, heat-killed bacteria, or unconcentrated nocardial culture filtrate, and changes to the cells were monitored. Consistent with the previous studies, N. asteroides GUH-2 induced DNA fragmentation and apoptosis in HeLa cells. Caspase activation and disruption of the mitochondrial membrane potential were also investigated to determine their roles in the induction of cell death. In all these experiments, significant changes were only induced by live nocardiae. A recent publication demonstrated that systemic administration of proteasome inhibitors can induce a Parkinsonian syndrome in rats that includes intraneuronal inclusions and characteristic behavioral alterations. Similar effects have been observed in mice and monkeys infected with N. asteroides GUH-2. In addition, some reports have shown that proteasome inhibition causes apoptotic death of affected cells. We therefore investigated the ability of N. asteroides GUH-2 to inhibit proteasome activity. Proteasome activity was significantly reduced, suggesting that this mechanism may be involved in the induction of apoptosis by these bacteria.