“…These block copolymers can assume some self-assembly ordered structures on the nanometric scale when mixed with the epoxy resin, and they can be further fixed during the curing process [7,8]. In other systems, the epoxy prepolymer and the block copolymer can provide a homogeneous solution before curing, but during the curing process the nanostructure can form through a mechanism called reaction-induced microphase separation [9]. Some examples of the copolymers that give rise to nanoscopic structures include diblocks and/or triblocks of poly(ethylene oxide) with polycaprolactone (PEO-b-PCL) [9], poly(propylene oxide) (PEO-b-PPO) [10][11][12][13][14][15], poly(hexylene oxide) (PEO-b-PHO) [16], poly(n-butylene oxide) (PBO-b-PEO) [17], poly(ethyl ethylene) (PEO-b-PEE) [7,8], poly(ethylene-alt-propylene) (PEO-b-PEP) [7,8,[18][19][20][21], low molar mass polyethylene (PEO-b-PE) [22], polystyrene (PEO-b-PS) [23], and polydimethylsiloxane (PEO-b-PDMS) [24]; block copolymers of polycaprolactone with polydimethyl-siloxane (PCL-b-PDMS-b-PCL) [25,26], poly(n-butyl acrylate) (PCL-b-PBA) [27], polybutadiene(PCLb-PBD-b-PCL) [28], polystyrene (PCL-b-PS) [29], or poly(butadiene-co-acrylonitrile) (PCL-b-PBN-b-PCL) [30]; block copolymers of poly(methyl methacrylate) with polystyrene (PMMA-b-PS) [31,32], and ABC-type triblock copolymer composed of polystyrene-b-polybutadiene-b-poly(methyl methacrylate) (PS-b-PBD-b-PMMA) [33,34], and polydimethyl-siloxane-b-polycaprolactone-b-polystyrene (PDMS-b-PCL-b-PS) [35].…”